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 

Abstract— Dynamic movements of the hand, fingers and 

thumb are difficult to measure due to the versatility and 

complexity of movement inherent in function. An innovative 

approach to measuring hand kinematics is proposed and 

validated. The proposed system utilises the Microsoft 

KinectTM and goes beyond gesture recognition, to develop 

a validated measurement technique of finger kinematics. The 

proposed system adopted landmark definition (validated 

through ground truth estimation against assessors) and grip 

classification algorithms, including kinematic definitions 

(validated against a laboratory-based motion capture system). 

The results of the validation show 78% accuracy when 

identifying specific markerless landmarks. In addition, 

comparative data with a previously validated kinematic 

measurement technique show accuracy of MCP±10° (average 

absolute error (AAE) = 2.4°), PIP±12° (AAE = 4.8°) and 

DIP±11° (AAE = 4.8°). These results are notably better than 

clinically based alternative manual measurement 

techniques. The ability to measure hand movements, and 

therefore functional dexterity, without interfering with 

underlying composite movements, is the paramount objective 

to any bespoke measurement system. The proposed system is 

the first validated markerless measurement system using the 

Microsoft KinectTM that is capable of measuring finger joint 

kinematics. It is suitable for home-based motion capture for 

the hand and therefore achieves this objective. 

 
Index Terms— Microsoft Kinect, Hand Kinematics, 

Markerless, Telerehabilitation. 

I. INTRODUCTION 

AND movements and hand function are intrinsic 

to quality of life. Dexterous ability is 

fundamental to gesture, communication, 

independence, and manipulation of, and interaction 
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with, objects and the environment. When functional 

ability is impaired, the prescription of rehabilitation 

exercises at home is a solution that can increase the 

intensity of practice and optimize recovery 

potential.   

The repetitive nature of home-based rehabilitation 

programs, such as those for stroke patient care, can 

be monotonous and often difficult for individuals to 

complete. Assessment of practice is essential for 

monitoring recovery, adapting prescriptions based 

on improvement or decline, and therefore providing 

more patient-centered care. Home-based 

rehabilitation and telecare are advocated by many 

government health organizations [1]-[3], to increase 

the throughput of patients for over-subscribed 

international healthcare systems. This however, is 

yet to be realized in mainstream healthcare. 

One important limiting factor is the current 

inability to monitor and measure hand movements. 

Systems capable of measuring the fine dexterity of 

the hand are therefore required. Rehabilitation 

professionals require detailed data to monitor 

clinical progress and modify treatments, whilst 

patients need real-time feedback to correct their 

movements and to stimulate motivation. Any 

telecare system must therefore provide enough 

feedback to replace verbal feedback usually 

provided by therapists.  

Motion capture systems have been used in a wide 

range of industries, including medical, occupational, 

sports and entertainment [4]-[6]. Four motion 

capture systems are currently used for hand capture; 

instrumented gloves [7], wrist-worn laser systems 

[8], inertial systems [7] and traditional optical 

systems [9], [10]. Glove-based systems provide a 

simple, quick measurement of hand position and do 

not suffer from occlusions. However, wearing and 

removing gloves can be difficult or impossible for 
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patients with hand deformities, spasticity and 

contractures. In contrast, inertial systems, such as 

the Nintendo Wii are widely used in rehabilitation 

centers [11]. However, these allow ‘trick’ 

movements, i.e. flicking the wrist to substitute 

whole-arm movements and therefore have limited 

application for unsupervised home-based 

rehabilitation [12].  

Traditional optical or camera-based systems, 

considered the gold-standard, are predominantly 

laboratory based. They require markers attached to 

the participant’s skin and are placed according to 

the underlying human anatomy, acting as reference 

points (landmarks). Segmental movement can then 

be defined and joint angles calculated; an example 

of marker placement for a human hand is shown in 

[9]. These systems generate very accurate results 

[13], [14] and the associated kinematic 

measurement techniques show repeatable errors 

from 1-8° [9], [15], [16].  However the feasibility 

of adopting these systems within a home 

environment is limited, not least by physical and 

economic constraints. 

II. MARKERLESS MOTION CAPTURE 

The development of a markerless motion capture 

system is presented using a commercially available 

gaming system (Microsoft Kinect
TM

). Comparable 

systems do exist for whole body tracking [17]-[20]; 

but require multiple cameras and hence lengthy 

post-processing. The proposed system will focus 

specifically on capturing hand and finger 

movements. Previous research has been undertaken 

in this area [21]-[23], but these systems only 

provide evidence of fingertip detection.  Research 

on gesture recognition has also been performed 

[24], [25], but these systems do not provide 

kinematic measurement. For rehabilitation purposes, 

clinicians require detailed and accurate 

measurement of the hands in order to assess 

progress and functional recovery. The patient also 

requires real-time feedback of their hand posture if 

they are going to participate in a ‘virtual’ or online 

rehabilitation gaming platform.  

III. SYSTEM OVERVIEW 

The initial phase of system development is 

presented to investigate whether the Microsoft 

Kinect
TM

 was capable of tracking hand movements. 

An overview of the system is presented that 

identifies anatomical landmarks, classification 

between grip types and calculates joint angles from 

a kinematic model. The initial phase of the system 

was able to detect two different modes: spread hand 

mode and pincer grip mode. The system output was 

tested using a two-point validation procedure: 1) 

using ground truth estimation between reviewers 

and the associated algorithms to assess the accuracy 

of landmark definition (or the identification of an 

anatomical point of interest), and 2) joint angles 

generated were compared against a laboratory-based 

gold standard motion capture system and validated 

kinematic measurement technique. 

The system requires a Microsoft Kinect
TM

 

suspended on a rig above a table (optimal height for 

reliable capture was 80cm on an adjustable rig 50 – 

125cm), allowing the reviewer to place their hands 

above the table to use the system (see Fig. 1). The 

Microsoft Kinect
TM

 was selected, as it is a 

commercially available device that is accessible to 

the public. It contains both infrared depth and color 

cameras and has a well-documented Application 

Programming Interface (API). The Kinect was used 

in default mode, (0.8 – 4m) rather than near mode 

for the field of view. The depth camera was used to 

identify the hand and fingers. In commercial 

versions of the device, only gross body segments, 

such as upper and lower limbs are detected. Depth 

data was segmented to isolate the user’s hand from 

background surfaces, such as a table or surrounding 

furniture. This required an initial calibration to set 

the height at which segmentation was optimally 

performed. The segmentation of the depth data 

generated a binary image (see Fig. 2). A contour 

generation algorithm was then executed on the 

binary image; producing a hand outline without any 

background errors (see Fig. 3).  

 
Fig. 1. System set-up showing participant, frame and Microsoft KinectTM. 
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1) Ground Truth Validation Testing 

Ground truth estimation [26] was used to validate 

the system’s landmark definitions; landmarks are 

directly compared to equivalent points generated 

from reviewer input. To account for human error, 

three trained reviewers in landmark identification 

performed the ground truth estimation in spread 

hand mode. If the correct pattern of points could not 

be found, then that frame was not tested or included 

in the results.  

Spread hand mode (see Fig. 2) consisted of the 

hand (right or left) placed flat with the fingers 

separated. The fingertips were defined as points of 

highest convexity and extracted, as were the spaces 

between the digits (highest concavity).  

 

 
Fig. 2. Binary image extracted from the infrared depth camera data and 

minima and maxima of convexity and concavity depicted as points of interest. 

Each reviewer tested 14 different videos (42 

videos in total). These videos contained subtly 

different spread hand positions (moving finger 

positions or waving). Frames were presented to each 

reviewer in random order to reduce anticipation of 

feature point locations. The videos portrayed three 

different users’ hands to increase the potential 

variability between frames and provide versatility 

that will be required of the final system 

implementation. For each video, the distance 

between the two co-ordinates (one generated by the 

algorithm, the other by the reviewer performing the 

ground truth estimation) was found. The average of 

these magnitudes was then taken from all the points 

found in the video. This was repeated for all spread 

hand mode videos and reviewers. 

Pincer grip (see Fig. 3) consisted of an active 

movement where the thumb opposes the fingertips.  

Four trained reviewers performed the ground truth 

estimation on 8 different pincer grip videos (33 

videos in total). 

A single factor analysis of variance (ANOVA) was 

undertaken to assess reviewer variability during 

ground truth estimation. 

 
Fig. 3. A contour image extracted directly from the program of a hand in 

pincer mode position with labeled points of interest. 

B. Grip Classification  

Following the landmark definition, the system was 

extended to classify transitions between spread hand 

to pincer grip modes. The latter grip posture was 

chosen as it is a common functional movement 

strategy [27] often present in many activities of 

daily living, such as when reaching for a cup during 

drinking. 

Points of high curvature were extracted from the 

contour around the hand and classified into 

"maxima" or "minima" depending on the sign of the 

curvature (convexity or concavity respectively). 

Transitions were then defined depending on the 

posture of the hand. To define the mode (posture), 

the program would look for a specific pattern of 

"maxima = fingertip" (FT) and "minima = finger 

spaces" (FS). The pattern for Spread Hand mode 

was FT, FS, FT, FS, FT, FS, FT, FS, FT. As this 

pattern is symmetrical, the same pattern was 

identifiable for both left and right hands.  

For pincer grip mode, different patterns were 

searched depending on whether a left or right hand 

was detected. If a left hand was observed, the 

systems defined a pattern of FT, FS, FT & FT, with 

the points then being further classified as thumb tip, 

thumb space, base knuckle on first finger and first 

finger tip. For a right hand, the pattern was reversed, 

FT, FT, FS & FT. 

The grip classification algorithm was designed to 

classify both spread hand and grip pincer modes 

following transitions between these two grips. This 

was an important consideration for development of 

the system in future phases; the seamless transition 

between grip postures is an important aspect of 

classifying the functional grips used. 

1) Joint Angle Algorithm 

The human finger is comprised of three joints; the 

metacarpophalangeal (MCP), proximal 
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interphalangeal (PIP) and distal 

interphalangeal (DIP) joints. Many kinematic 

methods measure MCP finger joint movement as a 

hinge [9], [10], [15], although there is anatomically 

some rotational movement around the long axis of 

the finger.  Given the negligible movement in the 

third dimension, and limited functional impact of 

the movement, the proposed system assumes hinge 

joints for the fingers.  

Having defined this constraint, it was 

hypothesized that for a fixed base position of the 

MCP, B, there will be only one combination of 

          and      to place the fingertip, D, into a 

particular position.  Thus, if the locations of B and 

D are known, in addition to the lengths of the 

phalangeal segments (    ,      and     ), then the 

joint angles j
1
 and j

2
 can be inferred. 

 
Fig. 4. Two-dimensional assumed kinematic model of the finger. 

An algorithm was developed to experimentally 

verify this hypothesis; calculating every possible 

location of the fingertip, given the physical 

constraints of the model, for all angles of 

          and     . Adjusting the step size of each 

angle as the full range was traversed set the 

precision. The algorithm then analyzed the results 

for possible matches, which would signify that there 

was more than one possible set of joint positions 

that could determine Dk, where Dk is the output of 

the k-curvature algorithm (detailed below) [28]. B 

was set as the mid-point between the thumb space 

and the point of high negative curvature on the 

contour when the finger is in flexion.  When the 

finger is in adduction, i.e. when the fingers and 

thumb are brought together, its value can no longer 

be directly inferred from the contour due to a lack of 

distinguishing features, so temporal analysis is 

performed to calculate the most likely value based 

on its previous positions.  The phalanges’ lengths 

can be measured by a clinician and input to the 

program before first-time use. These data are then 

stored in a database allowing the patient and 

clinician access to a personalised rehabilitation 

environment. 

By comparing the number of matches found with 

the total number of unique positions, the overall 

certainty of the algorithm working was calculated 

for various levels of precision. A ‘match’ is defined 

as multiple sets of different joint angles resulting in 

the fingertip being located in the same position, 

whereas a unique position is one for which there is 

only one set of joint angles that can result in the 

fingertip being located in any one position, thus 

confirming the hypothesis. The total number of end 

states was calibrated to reflect the number of pixels 

in the area of interest that can be seen by the 

Microsoft Kinect
TM

 and this was approximated as 

being 10% of its resolution of 640x480.    

Therefore the principle of the hypothesis was to 

calculate all possible values of j1, j2 and the DIP tip, 

D¸ to find the optimal match with the DIP tip found 

by the k-contour algorithm, Dk.  The values for 

           and      are then generated, as are the 

positions of j1 and j2. All possible coordinates of j1 

are calculated using (1) for all values of     , 

where Bx, By are the x and y components of B 

respectively: 
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All the possible coordinates of D can be found, 

additionally accounting for all values of     . Due 

to the fixed size of the tendons in the finger, the 
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amount through which      can rotate anatomically 

is limited by     : 
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The algorithm then calculates the minimum distance 

between Dk and all possible values for D. This result 

corresponds to the system’s best estimate of all 

joints’ positions, and hence the optimum values of 

          and     . 
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Refinements were made to optimize accuracy and 

performance. Due to the data acquisition rate 

(30FPS), and the limits of human movement, the 

finger was unlikely to move very far between 

successive frames.  Thus the search for      can be 

limited to just a few degrees either side of its 

previous value,     
   (±4° was found to be optimal; 

higher values negated the performance advantages 

without significantly improving results, and lower 

values lacked precision).  This reduced the 

likelihood of anomalous data corrupting the 

intended values, whilst also significantly lowering 

the required processing time for each frame, 

reducing the algorithm’s complexity to (where p is 

the degree of precision calculated by the algorithm): 
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It was satisfactory to constrain: 
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which is an empirical relationship established by 

Byron, et al. [29] and to enhance model output [24], 

[30]. Whilst this reduced the degrees of freedom 

(DOF) of the finger’s movement by one, it modeled 

the relationship between the PIP and DIP, and 

further reduced the program’s complexity to: 

 

 (
 

 
)                     (7) 

 

This allowed for improved real-time 

performance. These enhancements are shown in (8): 
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Ground truth estimation was used to validate the 

accuracy of Landmark Definitions; however, further 

validation of the system was required to assess the 

validity of the Joint Angle Algorithm. The output of 

the system was therefore compared directly with a 

laboratory-based motion capture system as a gold-

standard. 

 Twenty-six 3mm hemisphere retro-reflective 

markers were placed on the dorsal aspect of the 

right wrist, hand, fingers and thumb of a single 

participant in accordance with the Hand & Wrist 

Kinematics (HAWK) protocol; a previously 

published kinematic measurement technique that 

has been validated and tested for reliability [9], [10]. 

HAWK has been shown to generate joint angles of 

the wrist, hand, fingers and thumbs accurately to 

<1° [9], [10].  

 The participant was asked to sit at a table with 

their hand positioned above the surface as illustrated 

in Fig. 1 holding their right hand in a pincer grip. 

They were then asked to open and close their hand 

to mimic grasping a cup. Finger joint angles (MCP, 

PIP & DIP) were generated whilst the participant 
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moved their hand from an open position (Open1), to 

a mid-point (Mid1), to a closed-grip (Closed), then 

back to the mid-point (Mid2) and finally back to the 

open position (Open2). This process was then 

repeated. 

 The Microsoft Kinect
TM

 was used alongside a 

Vicon T-Series infrared motion capture system 

sampling at 100Hz. The Vicon system consists of 

12 cameras (6 T40 and 6 T160 cameras). These data 

were then directly compared to assess the accuracy 

of the proposed system to that of the HAWK 

kinematic measurement technique. 

IV. RESULTS  

A two-phase validation process of the grip 

classification algorithms was undertaken. For spread 

hand mode, the method of ground truth estimation 

was used, but due to potential errors inherent in 

human-based validation, further validation was 

undertaken comparing the algorithm output against 

a laboratory-based motion capture system. 

A. Ground Truth Validation Testing 

Three reviewers assessed 42 videos in total for 

Spread Hand mode. In total 788 frames were 

successfully analyzed, and 221 were rejected due to 

classification not being able to be performed, or a 

suitable contour not found by the algorithm. Four 

reviewers assessed 33 videos in total for Pincer 

Mode. In total 904 frames were successfully 

analyzed, and 146 were rejected. The system 

obtained a result 78% of the time. When the system 

performed a classification, the points were classified 

correctly compared to the reviewer classification. 

The average variance for this approach was 2.34 

pixels for spread hand mode and 9.47 in pincer 

mode.  

Pearson’s correlation was calculated between the 

points of interest generated by the algorithm and the 

reviewer’s classification in order to determine 

whether there was a linear relationship, which 

would be used as an indicator of output reliability. 

The correlation was investigated separately between 

the x and y co-ordinates. The results are shown in 

Table I.  

Due to errors inherent in the recording process 

(clicking on a screen), there may be errors within 

this process of validation, which was assessed using 

an ANOVA. 

 

TABLE I  
UNITS RESULTS OF THE PEARSON'S PRODUCT MOMENT CORRELATION FOR X 

AND Y CO-ORDINATES BETWEEN DIFFERENT REVIEWERS AND 

ALGORITHMICALLY GENERATED FEATURES 

REVIEWER CORRELATION 

BETWEEN X VALUES 

CORRELATION 

BETWEEN Y VALUES 

REVIEWER 1 R = 0.996948 R = 0.990262 

REVIEWER 2 R = 0.997922 R = 0.996943 

REVIEWER 3 R = 0.996778 R = 0.989879 

 

A single factor ANOVA was then calculated from 

these data. The results show that F is significant at p 

< 0.0036, indicating a significant relationship 

between the validation errors. 

B. Joint Angle Algorithm 

The results from testing the joint angle algorithm 

shows that precision decreases with a higher 

required prediction value, i.e. the algorithm can 

predict within 6° with 78.2% certainty, within 8° 

with 92% certainty and within 10° with 97% 

certainty (see Fig. 5).  

 

 
Fig. 5. Graph showing how the certainty of the algorithm working correctly 
varies with the degree of precision required. 

The joint angle algorithm was therefore set to find 

the angles correct to the nearest 8°, due to the high 

probability of getting correct results (92% according 

to Fig. 5.) and to ensure real-time performance.  The 

complexity of the algorithm is inversely 

proportional to the cube of the degrees of precision, 

p, due to the triplet of nested loops that generate the 

three angles: 

 

O (
 

  
)                       (9) 

 

Thus, the complexity becomes too large to run in 

real-time if p is too low.  In practice, p ≥ 4° was 

used to ensure the program runs smoothly. 
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The results of the comparative analysis between 

the proposed system and the laboratory-based 

motion capture system are presented in Table II. 

Fig. 6 to Fig. 8 illustrates the full dynamic 

movement for     ,      and     , respectively. 

They show direct comparative data between the 

proposed system and motion capture system 

including HAWK. 

 
TABLE II 

MCP ANGLES MEASURED BY MOTION CAPTURE + HAWK 

(LAB) AND KINECT SYSTEMS DURING A DYNAMIC HAND 

MOVEMENT 

 
      / ° 

 TEST 1 TEST 2 

 LAB KINECT LAB KINECT 

OPEN 1 43 40 25 15 

MID1 20 22 20 16 

CLOSED 7 7 5 3 

MID2 22 28 23 29 

OPEN2 41 42 41 39 

      / ° 

 TEST 1 TEST 2 

 LAB KINECT LAB KINECT 

OPEN 1 36 24 36 28 

MID1 25 23 26 31 

CLOSED 2 8 4 8 

MID2 24 22 26 22 

OPEN2 38 28 41 45 

      / ° 

 TEST 1 TEST 2 

 LAB KINECT LAB KINECT 

OPEN 1 27 18 29 18 

MID1 17 16 16 21 

CLOSED 0 6 3 4 

MID2 15 14 11 15 

OPEN2 27 22 31 30 

 

 
Fig. 6. Comparative data between the Microsoft KinectTM and the Motion 

Capture system + HAWK for measuring     . 

 
Fig. 7. Comparative data between the Microsoft KinectTM and the Motion 

Capture system + HAWK for measuring     . 

 
Fig. 8. Comparative data between the Microsoft KinectTM and the Motion 

Capture system + HAWK for measuring     . 

V. DISCUSSION 

A need to develop a home-based rehabilitation tool 

to capture hand and finger movement has been 

identified.  To provide such an innovative step-

change in home-based healthcare, this new 

technology must be able to robustly track and 

accurately measure the movements of the hand. This 

paper has presented a novel system using the 

Microsoft Kinect
TM

 to identify anatomical (hand) 

landmarks, develop classification algorithms for 

different grip modes and the definition of a joint 

angle algorithm for remote measurement. This 

information was validated using a two-phase 

process; ground truth estimation against reviewers, 

and a comparative analysis against the motion 

capture industry’s gold standard system.  

In home-based rehabilitation, some remote 

technologies do include measurement of the hand 

and fingers, often using glove-based technology [7], 

[31]. Gianstanti [32], for example, adopted a glove-

based approach for tracking and graphically 

rendering hand gestures. However, some Authors 

advocate moving away from traditional 
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instrumented gloves as a home-based rehabilitation 

solution due to the difficulty in donning and doffing 

[12], [33]. Alternative solutions include miniature 

inertial measurement units (IMUs) attached to each 

phalanx of the fingers and thumbs [7]. However the 

practical application of such a system requires a 

series of wired nodes attached to a central power 

and processing source, which is cumbersome to 

wear and therefore unrealistic as a home-based 

solution. 

The proposed system, once realized, can be 

deployed in either a home-based or clinical setting. 

In terms of accuracy, the proposed system must be 

comparable, if not competitive to existing systems 

and methods of measurement. In clinical practice, 

the most common measurement technique to assess 

joint range of movement is manual goniometry. 

These traditional measurements are known to have a 

large component of human error, averaging 7-9° for 

each joint movement measured [34]. Furthermore, 

these manual systems can only obtain measurements 

for a static position and do not generate continuous 

data as the user moves their hand.  Thus the 

proposed system would give a greater quantity and 

quality of information than previously available 

using these traditional methods.   

 The system was validated using two methods; 

ground truth estimation and a direct comparison 

with a laboratory-based motion capture system. The 

process of ground truth estimation was limited and 

the Authors advocate a large sample size be used to 

avoid individual variability. 

The inclusion of the joint angle algorithm is 

highly novel in markerless motion capture of the 

hand, and particularly within the context of utilizing 

the Microsoft Kinect
TM

. In the current phase, the 

Microsoft Kinect
TM

 was used in default mode. It is 

arguable that the proposed system is limited by the 

resolution of the images received. Therefore further 

work using the Microsoft Kinect
TM

 in near mode 

may reduce errors and achieve higher levels of 

accuracy. The results of the comparison between the 

joint angle algorithm and the laboratory-based 

system showed a good to high correlation in     , 

     and      across the entire dynamic movement.  

The maximum error for      is ±10°, although the 

average absolute deviation is much smaller at just 

2.4°.  The maximum error for      is ±12° and the 

average absolute error is 4.8°.  These errors are 

slightly larger since      is measured relative to the 

plane created by     . Therefore any errors in 

    will be compounded in the result of     , in 

addition to any intrinsic errors in the measurement 

of this angle.  The maximum error for      is ±11° 

and the average absolute error is 4.8°.  These are 

very similar to the results for      due to the linear 

relationship between the angles used to calculate 

    . These results are comparable to results of 

manual goniometry, where 2-18.9° was found when 

measuring hip motion [35], 6-7° when measuring 

cadaveric wrists [36] and 7-9° for measuring finger 

position [37]. The proposed system is therefore 

comparable to manual goniometry and an 

improvement due to the disparity in reliability of the 

traditional technique, and the proposed system 

being capable of working in real-time. In addition, 

the proposed system is markerless, unlike other 

motion capture solutions aimed at home-based 

rehabilitation [38]. 

Direct comparisons between the Microsoft 

Kinect
TM

 and laboratory-based motion capture has 

also been undertaken by Dutta [39], who found root 

mean squared errors (SD) of 0.0065m (0.0048m), 

0.0109m (0.0059m) and 0.0057m (0.0042m) in the 

x, y and z directions respectively of an absolute 

position. In this study, Dutta was measuring the 

position of a series of static points within a 

laboratory. Dutta found the largest errors farthest 

away >3.0m from the sensor. This implies that close 

data capture, like those proposed by the Authors for 

hand rehabilitation would be less likely to incur 

these identified errors. This assumption would need 

validation and the release of a ‘near mode’ in the 

Microsoft SDK would also help facilitate this aim. 

In other work, Alnowami, et al., [40] used the 

Microsoft Kinect
TM

 to capture absolute position on 

the thorax for measuring respiratory 

inhalation/exhalation. During validation work, 

Alnowami, et al., found the Microsoft Kinect
TM

 to 

have millimeter precision at depths 0.8-1.5m. 

An obvious benefit of the proposed system is its 

ability to run in real-time; making it a viable 

solution as a biofeedback device in the home. 

Whilst some laboratory-based motion capture 

systems, such as the Vicon system can find and 

classify POIs in real-time, the additional process of 

producing model outputs, and, hence joint angles, 

currently requires post-processing.  
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In a recent study of 24 markerless hand motion 

capture systems only two were found to work in 

real-time [19].  However, of these, one system 

performs at 10 FPS [20] and one requires a cluster 

of six PCs to run at 30 FPS.  By contrast, the 

proposed system reaches 30 FPS on a single PC and 

is limited by the processing speed of the Microsoft 

Kinect
TM

 (30 FPS).  The marker-based system by 

Aristidou & Lasenby [21] also achieves real-time 

performance of 76 FPS, but requires 10 separate 

cameras and presents no data to ascertain the level 

of accuracy achieved.  El-Sawah, et al. [22] propose 

a real-time system with a reported accuracy of ±1°, 

but the system proposed is purely theoretical with 

no indication that it has been implemented. 

Therefore, the system proposed by the Authors is 

highly novel being the only real-time system 

suitable for use by a patient with standard desktop 

equipment commonly available in the home. 

The tracking component of the proposed system is 

not novel. Many gesture-tracking systems have been 

proposed using fingertip tracking for Natural User 

Interfaces [41], [42]. The landmark definition and 

consequently, the grip classification defined in the 

proposed system, and validated through ground 

truth estimation, may, however, improve gesture 

recognition systems further by utilizing less 

constrained and natural hand movements.  Like 

other clinical systems [43]-[45], the proposed 

system can only classify a limited number of 

gestures which is suitable for a specific application 

where there are a finite number of rehabilitation 

gestures. However, the proposed system has been 

shown to detect gestures following transitions, and 

is the first system to apply a kinematic technique to 

measure finger joint movement. 

 Previous research has [25] adopted gesture 

recognition and reported a total measurement of 22 

DOF for the whole hand, with three DOF for each 

finger.  However, the Authors assert that      
 

 
     and that          . Therefore, in reality, 

each finger had only one DOF. In addition, real-

time performance was achieved at 10.2 FPS using a 

cluster of 9 dual-core CPUs (2.16GHz), which is not 

practical for home use. The results presented 

suggest a maximum error in      of ±6°, however 

these are referenced only to a ground truth. This 

would include a large intrinsic error, which was not 

reported by the Authors, so it was not possible to 

ascertain the credibility of these results.  This 

system is the closest to the proposed system in 

terms of features and performance. 

The results presented here were calculated in real-

time, with a markerless solution using one 

Microsoft Kinect
TM

 camera. There is currently no 

other system available that combine these features, 

although several exist that can achieve part of this 

solution. As previously discussed, laboratory-based 

motion capture systems can achieve higher accuracy 

but are impractical for use in a home-based 

rehabilitation environment. An alternative to this 

would be to use a marker-based approach with the 

Microsoft Kinect
TM

. Cordella, et al., [38] adopts this 

approach using a comprehensive marker set. This 

solution however poses problems analogous to the 

use of gloves and inertial measurement systems: the 

accuracy of the system relies on the patient being 

able to accurately position and wear the device, in 

this case a marker set reliant on palpation for 

accurate placement. This is not a suitable solution 

for rehabilitation or remote monitoring in a home 

environment.  

VI. CONCLUSION 

 

Ubiquitous and unobtrusive systems are paramount 

to patient adherence in the next generation of home-

based, remote healthcare. The development and 

preliminary validation of a real-time markerless 

system has been presented, which can measure 

finger movement using the Microsoft Kinect
TM

. 

This is the first system that goes beyond gesture 

recognition; defining the basis for a home-based 

rehabilitation platform.  
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